Minggu, 24 Januari 2016

makalh ikatan kimia anorganik



Makalah
" Ikatan Kimia "

a

Klasifikasi ikatan, Faktor geometri yang menentukan ikatan dan struktur
Faktor elektronik yang menentukan ikatan dan struktur

Rosanni Sinurat  (1416150011)


PROGRAM STUDI PENDIDIKAN KIMIA
FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN
UNIVERSITAS KRISTEN INDONESIA
2015
Ikatan dan Struktur

Jari-jari atom, sudut ikatan, dan elektron valensi atom atau ion yang menyusun senyawa menentukan ikatan, struktur, reaksi dan sifat fisik senyawa. Sangat diinginkan bahwa sifat kimia senyawa yang dikenal dan senyawa baru dapat dijelaskan dan diprediksikan dengan menggunakan parameter universal yang khas untuk unsur-unsur penyusunnya. Kimia anorganik telah berkembang seiring dengan penemuan senyawa baru dan modus ikatan baru. Oleh karena itu, sangat penting untuk mengetahui modus ikatan, faktor geometrik dan elektronik yang menentukan ikatan, dan mempelajari konsep dasar teori orbital molekul.

1. Klasifikasi ikatan
Ikatan yang menggunakan pasangan elektron untuk mengikat atom A dan B disebut   ikatan kovalen, dan ditulis sebagai A-B atau A:B. Karena ada dua pasang elektron yang terlibat dalam ikatan ganda dan tiga pasang di ikatan rangkap tiga; ikatan-katan itu ditandai berturut-turut dengan A=B, A≡B atau A::B, A:::B. Ikatan kovalen sangat sederhana, namun merupakan konsep yang sangat bermanfaat. Konsep ini diusulkan oleh G. N. Lewis di awal abad 20 dan representasinya disebut struktur Lewis. Pasangan elektron yang tidak digunakan bersama disebut pasangan elektron bebas, dan disimbolkan dengan pasangan titik, seperti A:
Delapan elektron diperlukan untuk mengisi satu orbital s dan tiga orbital p, dan bila bila jumlah total elektron yang digunakan untuk ikatan dan pasangan elektron bebasnya sama dengan delapan, struktur molekul yang stabil akan dihasilkan. Aturan ini disebut aturan oktet dan sangat bermanfaat dalam mendiskusikan struktur molekular senyawa golongan utama secara kualitatif. Jelas, aturan ini tidak berlaku untuk molekul hidrogen, H2, tetapi dapat digunakan untuk molekul kovalen, seperti O2 atau CO dan bahkan senyawa organik yang rumit. Untuk unsur-unsur setelah periode ke-3, jumlah ikatan kovalen sering lima (misalnya PCl5) atau enam (misalnya SF6) dan atom pusat dalam molekul-molekul ini menunjukkan hipervalensi. Dalam kasus ini, karena elektron s dan p kekurangan untuk membentuk lebih dari empat ikatan kovalen dua elektron, dulunya dipercaya bahwa dalam hipervalensi elektron d ikut terlibat. Namun saat ini, dipercaya ikatan hipervalen ini hanya melibatkan orbital s dan p saja dengan orde ikatan yang lebih rendah dari orde-ikatan ikatan tunggal.
Ikatan elektrostatik antara kation (ion positif) dan anion (ion negatif), seperti dalam natrium khlorida, NaCl, disebut dengan ikatan ionik. Karena muatan elektrik total senyawa harus nol, muatan listrik kation dan anion harus sama. Ada sumbangan parsial ikatan kovalen bahkan dalam senyawa ionik, dan ion-ionnya tidak harus terikat satu sama lain melalui interaksi elektrostatik saja.
Prinsip kenetralan lisrik Pauling menyatakan bahwa muatan listrik netto setiap komponen senyawa pada dasarnya netral. Seperti yang akan dibahas nanti, struktur kebanyakan seyawa padat dapat dideskripsikan sebagai susunan bergantian lapisan kation dan anion, dan diklasifikasikan menjadi bebrapa jenis kristal representatif.
Atom-atom logam terikat dengan elektron konduksi yang berasal dari elektron valensi atom logam. Ikatan karena elektron konduksi dalam logam disebut dengan ikatan logam.
Umumnya, ikatan kimia dapat dinyatakan sebagai salah satu dari tiga ikatan di atas, tetapi senyawa baru yang disintesis satu demi satu tidak selalu dapat diklasifikasikan dengan ikatan kovalen 2- pusat 2-elektron. Senyawa-senyawa ini meliputi ikatan tuna-elektron dalam boron hidrida,
ikatan koordinat dalam senyawa kompleks logam transisi, ikatan logam-logam dalam senyawa kluster, dsb., dan konsep-konsep baru ikatan telah dikenalkan dalam teori ikatan untuk menjelaskan jenis-jenis ikatan kimia baru ini. Sebagaimana telah dikenal ikatan lemah yang disebut
interaksi van der Waals telah dikenali ada di atom atau senyawa molekular netral. Potensial interaksi ini berbanding terbalik dengan jarak antar atom pangkat 6. Jarak terdekat namun nonikatan antar atom diperkirakan dengan menjumlahkan jari-jari van der Waals yang diberikan untuk masing-masing atom.


Interaksi lemah X-H-Y yang dibentuk oleh atom hidrogen dengan atom dengan
keelektronegativan lebih besar dari hidrogen X, Y (nitrogen, oksigen, fluorida, dsb.) disebut ikatan hidrogen. Ikatan hidrogen memainkan peran yang penting dalam es, struktur heliks ganda DNA, dsb.
2. Faktor geometri yang menentukan ikatan dan struktur
Dua parameter, jari-jari dan kekuatan menarik elektron atom atau ion menentukan ikatan, struktur, dan reaksi zat elementer dan senyawa. Banyak usaha telah didedikasikan untuk mendapatkan nilai numerik dua faktor yang dapat diterapkan untuk semua material. Diharapkan  sifat kimia senyawa yang diketahui, dan material baru yang kini belum ada dapat diprediksi dengan kombinasi nilai numerik yang cocok. Pertama, faktor geometri akan dideskripsikan.
Jari-jari atom (pm)





                       


a. Jari-jari atomik dan ion
Kerapatan elektron dalam atom secara perlahan akan menuju, tetapi tidak pernah mencapai nol ketika jarak dari inti meningkat. Oleh karena itu, secara ketat dapat dinyatakan bahwa jari-jari atom atau ion tidak dapat ditentukan. Namun, secara eksperimen mungkin untuk menentukan jarak antar inti atom. Jari-jari atomik yang ditentukan secara eksperimen merupakan salah satu parameter atomik yang sangat penting untuk mendeskripsikan kimia struktural senyawa. Cukup beralasan untuk mendefinisikan jari-jari logam sebagai separuh jarak atom logam. Separuh jarak antar atom didefinisikan juga sebagai jari-jari kovalen zat elementer (Tabel 2-1).
Tabel 2.2 Jari-jari ionik (pm). Bilangan dalam tanda kurung menyatakan bilanga koodinasi ion.



Karena kation dan anion unsur yang berbeda dalam senyawa ion diikat dengan interaksi elektrostatik, jarak ikatan adalah jumlah jari-jari ionik yang diberikan untuk kation dan anion. Jari-jari ionik standar satu spesies ditetapkan terlebih dahulu dan kemudian dikurangkan dari jarak antar ion untuk menentukan jari-jari ion partnernya. Sebagai standar, jari-jari ion O2- dalam sejumlah oksida ditetapkan sebesar 140 pm (1 pm = 10-12 m) (R. D. Shannon). Jari-jari kation dalam oksida adalah selisih dari jarak ikatan dan 140 pm. Setelah jari-jari kation dalam oksida ditentukan, jari-jari anion lain dapat dihitung dengan mengurangkan jari-jari kation dari jarak antar atom dalam senyawa ion. Dengan menerapkan metoda seperti ini untuk berbagai senyawa ion, jari-jari ion telah dikompilasi dalam suatu cara sedemikian sehingga nilai perhitungan dan percobaan umumnya konsisten (Tabel 2-2).
Bahkan dalam senyawa ionik terdapat sumbangan kovalen dan tidak terlalu diharapkan nilai jarak ikatan perhitungan dan percobaan akan tepat sama. Bahkan bila nilai jari-jari ion standar diubah, kita dapat mengkompilasi jari-jari ion yang masih konsisten untuk banyak senyawa. Contoh lain jari-jari yang diusulkan adalah jari-jari ion O2- adalah 132 pm (V. M. Goldschmidt) atau 60 pm (J.C. Slater). Kita juga harus sadar bahwa jarak kation-anion pasangan ion yang sama menjadi lebih besar ketika bilangan koordinasi ion lawannya meningkat. Oleh karena itu, dalam diskusi sifat struktural senyawa ion apapun dari sudut pandang jari-jari ionik, set jari-jari ionik yang dihitung dengan menggunakan jari-jari standar yang sama untuk ion dengan bilangan koordinasi yang sama harus digunakan.
Jari-jari anion tidak selalu lebih besar. Jari-jari logam dan kovalen, juga disebut jari-jari atomik, menjadi lebih kecil dalam periode yang sama dari kiri ke kanan, kemudian meningkat lagi di periode selanjutnya. Kontraksi lantanoid bertanggung jawab atas fakta bahwa unsur periode ke-5 (4d) memiliki jari-jari hampir sama dengan unsur periode ke-6 (5d). Dalam sistem periodik, unsur-unsur lantanoid disisipkan sebelum unsur 5d. Jari-jari atomik unsur lantanoid menurun dengan nyata dengan kenaikan muatan inti efektif sebab efek perisai orbital 4f unsur lantanoid lemah, disebabkan bentuk orbitalnya. Akibatnya, jari-jari atomik unsur setelah lantanoid sangat mirip dengan unsur-unsur 4d.
b. Entalpi kisi
Walaupun kestabilan kristal dalam suhu dan tekanan tetap bergantung pada perubahan energy bebas Gibbs pembentukan kristal dari ion-ion penyusunnya, kestabilan suatu kristal ditentukan sebagian besar oleh perubahan entalpinya saja. Hal ini disebabkan oleh sangat eksotermnya pembentukan kisi, dan suku entropinya sangat kecil (lihat bagian 3.1). Entalpi kisi, ΔHL, didefinisikan sebagai perubahan entalpi standar reaksi dekomposisi kristal ionik menjadi ion-ion gasnya (s adalah solid, g adalah gas and L adalah kisi (lattice)).
MX(s) → M+(g) + X- (g) ΔHL
Entalpi kisi secara tidak langsung dihitung dari nilai perubahan entalpi dalam tiap tahap menggunakan siklus Born-Haber ( Gambar 2.1). Yakni, suatu siklus yang dibentuk dengan menggunakan data entalpi; entalpi pembentukan standar kristal ion dari unsur-unsurnya, ΔHf, entalpi sublimasi padatan elementernya, entalpi atomisasi yang berhubungan dengan entalpi disosiasi molekul elementer gasnya, ΔHatom, entalpi ionisasi yakni jumlah entalpi ionisasi pembentukan kation dan entalpi penangkapan elektron dalam pembentukan anion, ΔΗion. Entalpi kisi dihitung dengan menggunakan hubungan:
Δ 0 + Δ 0 − Δ 0 − Δ 0 = 0 atom ion L f H H H H





    Gambar 2.1 Siklus Born-Haber untuk KCl.

           
c. Tetapan Madelung
Energi potensial Coulomb total antar ion dalam senyawa ionik yang terdiri atas ion A dan B adalah penjumlahan energi potensial Coulomb interaksi ion individual, /Vab. Karena lokasi ion-ion dalam kisi kristal ditentukan oleh tipe struktur, potensial Coulomb total antar ion dihitung dengan menentukan jarak antar ion d. A adalah tetapan Madelung yang khas untuk tiap struktur Kristal (Tabel 2-3).
NA adalah tetapan Avogadro dan zA dan zB adalah muatan listrik kation dan anion. Interaksi elektrostatik antara ion-ion yang bersentuhan merupakan yang terkuat, dan tetapan Madelung biasanya menjadi lebih besar bila bilangan koordinasinya meningkat. Sebab muatan listrik mempunyai tanda yang berlawanan, potensialnya menjadi negatif, menunjukkan penstabilan yang menyertai pembentukan kisi kristal dari ion-ion fasa gas yang terdispersi baik. Walaupun potensial listrik terendah biasanya menghasilkan struktur paling stabil, namun ini tidak selalu benar sebab ada interaksi lain yang harus dipertimbangkan.
Tabel 2.3 Tetapan Madelung.
Tipe Struktur                                                                       Tetapan Madelung
Garam dapur                                                                                  1.748
Cesium khlorida                                                                             1.763
Sfalerit                                                                                            1.638
Wurtzit                                                                                            1.641
Flourit                                                                                             2.519
Rutil                                                                                                2.408
Faktor terbesar selanjutnya yang berkontribusi pada entalpi kisi adalah gaya van der Waals, dan gaya dispersi atau interaksi London. Interaksi ini bersifat tarikan antara dipol listrik, yang berbanding terbalik dengan pangkat 6 jarak antar ion. Gaya van der Waals nilainya sangat kecil.
V = − NAC
Nilai konstanta C khas untuk setiap senyawa. Karena gaya van der Waals paling besar harganya 1% dari harga total gaya Coulomb, pengabaian gaya ini dalam perhitungan entalpi kisi dapat diterima.
d. Struktur kristal logam
Bila kita bayangkan atom logam sebagai bola keras, bila disusun terjejal di bidang setiap bola akan bersentuhan dengan enam bola lain (A). Bila lapisan lain susunan 2 dimensi ini diletakkan di atas lapisan pertama, pengepakan akan paling rapat dan strukturnya akan paling stabil secara energetic bila atom-atom logamnya diletakkan di atas lubang (B) lapisan pertama. Bila lapisan ke-3 diletakkan di atas lapisan ke-2, ada dua kemungkinan. Yakni, lapisan ke-3 (A) berimpit dengan lapisan pertama (A) atau lapisan ke-3 (C) tidak berimpit baik dengan (A) atau (B). Pengepakan
jenis ABAB...- disebut heksagonal terjejal (hexagonally close-packed (hcp)) ( Gambar 2.2), dan jenis ABCABC...-disebut kubus terjejal (cubic close-packed (ccp)) ( Gambar 2.3). Dalam kedua kasus, setiap bola dikelilingi oleh 12 bola lain, dengan kata lain berbilangan koordinasi 12. Polihedral yang dibentuk dalam hcp adalah anti-kubooktahedral, dan dalam ccp adalah kubooktahedral.
Gambar 2.2 Susunan hcp bola.




                       

Gambar 2.3 Susunan ccp bola.
Bila kisinya diiris di bidang yang berbeda, sel satuan ccp nampak berupa kisi kubus berpusat muka (face-centered cubic (fcc)), mengandung bola di setiap sudut kubus dan satu di pusat setiap muka ( Gambar 2.4). Sel satuan hcp adalah prisma rombohedral yang mengandung dua bola yang terletak pada posisi yang ditunjukkan di Gambar 2.5. Ada beberapa modus penyusunan lapisan yang berbeda dari hcp dan ccp normal, dan banyak contoh yang diamati.
Gambar 2.4 Ungkapan yang berbeda dari ccp.






Gambar 2.5 Ungkapan yang berbeda dari hcp.
Kisi dengan bola lain di pusat kisi kubus terdiri dari delapan bola adalah kisi kubus berpusat badan (body centered cubic lattice (bcc)), dan beberapa logam mengadopsi struktur ini. Rasio ruang yang terisi dalam kisi bcc lebih kecil dibandinkan rasio dalam susunan terjejal, namun selisihnya tidak banyak. Walaupun bola pusatnya secara formal berkoordinasi 8, pada dasarnya koordinasinya 14 karena ada 6 bola yang jaraknya hanya 15.5% lebih panjang dari 8 bola terdekat pertama. Namun, karena rasio ruang terisinya lebih kecil, struktur bcc sangat jarang muncul. Logam murni cenderung mengadopsi hcp atau ccp.
Dalam hcp dan ccp, terdapat lubang di antara bola-bola; yang dapat berupa lubang Oh yang dikelilingi oleh 6 bola atau lubang Td yang dikelilingi oleh 4 bola ( Gambar 2.6). (Oh dan Td adalah simbol simetri yang digunakan dalam teori grup). Dalam padatan ionik, bila anion dalam susunan hcp atau ccp, kation masuk di lubang-lubang ini.




Gambar 2.6 Lubang oktahedral dan tetrahedral.
e.  Kristal Ionik
Dalam kristal ionik, seperti logam halida, oksida, dan sulfida, kation dan anion disusun bergantian, dan padatannya diikat oleh ikatan elektrostatik. Banyak logam halida melarut dalam pelarut polar
misalnya NaCl melarut dalam air, sementara logam oksida dan sulfida, yang mengandung kontribusi ikatan kovalen yang signifikan, biasanya tidak larut bahkan di pelarut yang paling polar sekalipun. Struktur dasar kristal ion adalah ion yang lebih
susunan terjejal dan ion yang lebih kecil (biasanya kation) masuk kedalam lubang oktahedral atau tetrahedral di antara anion. Kristal ionik diklasifikasikan kedalam beberapa tipe struktur berdasarkan jenis kation dan anion yang terlibat dan jari-jari ionnya. Setiap tipe struktur disebut dengan nama senyawa khasnya, jadi struktur garam dapur tidak hanya merepresentasikan struktur NaCl tetapi juga senyawa lainnya. Tipe struktur-struktur utama senyawa padat dan contoh masing-masing tipe diberikan di Tabel
Tabel 2.4 Tipe-tipe struktur kristal senyawa padat.
Tipe Kristal                        Bilangan koordinasi               Contoh senyawa
Garam dapur                    (6,6)                 LiCl, NaCl, KBr, RbI, AgCl, MgO, NiO, InP
Cesium khlorida                (8,8)                             CsCl, CsBr, CsI, CuZn
Sfalerit                              (4,4)                             ZnS, CdS, HgS, CuCl, GaP
Fluorit                                (8,4)                                         CaF
Struktur garam dapur Natrium khlorida NaCl adalah senyawa khas yang dalam strukturnya anion Cl- disusun dalam ccp dan kation Na+ menempati lubang oktahedral (Oh) ( Gambar 2.7). Setiap kation Na+ dikelilingi oleh enam anion Cl-. Struktur yang sama akan dihasilkan bila posisi anion dan kation dipertukarkan. Dalam hal ditukar posisinya, setiap anion Cl- dikelilingi oleh enam kation Na+. Jadi, setiap ion berkoordinasi 6 dan akan memudahkan bila strukturnya dideskripsikan sebagai struktur (6,6). Jumlah ion dalam sel satuan dihitung dengan menjumlahkan ion seperti diperlihatkan dalam Gambar 2.7. Ion di dalam kubus dihitung satu, ion di muka kubus dibagi dua kubus, di sisi digunakan bersama empat kubus dan di pojok digunakan bersama oleh 8 kubus. Sehingga untuk struktur NaCl ada 4 ion Cl dalam sel satuan NaCl yang didapatkan dengan mengalikan jumlah ion dalam sel dengan satu, di muka dengan 1/2, dan di sisi dengan 1/4 dan di sudut dengan 1/8. Jumlah ion Na dalam sel satuan juga 4 dan rasio jumlah Cl dan Na cocokdengan rumus NaCl.


Gambar 2.7 Struktur NaCl.
Cesium khlorida Cesium khlorida, CsCl, adalah struktur khas yang diberikan di Gambar 2.8. Ada satu ion Cs+ di pusat kubus dan delapan ion Cl- berada di sudut-sudut kubus. Sebaliknya, bahkan bila Cl- di pusat dan delapan Cs+ di sudut-sudut kubus, jumlah masing-masing ion tetap sama. Jadi, struktur ini dirujuk sebagai struktur (8, 8). Ada satu ion Cs+ dan satu ion Cl- dalam satu sel satuan cocok dengan rumus CsCl.
Gambar 2.8 Struktur CsCl.
Struktur zink blenda Zink blenda memiliki komposisi ZnS dan sel satuannya digambarkan di Gambar 2.9. Anion S2- tersusun dalam ccp dan kation Zn2+ menempati separuh lubang tetrahedral (Td). Dalam susunan ini, setiap kation berkoordinasi dengan empat anion, dan masing-masing anion dengan empat kation. Jadi zink blenda adalah struktur (4, 4). Ada masing-masing empat ion Zn2+ dan S2- dalam sel satuan dan rasio ini cocok dengan rumus ZnS. Gambar 2.9 Struktur ZnS.
Struktur fluorit Komposisi flourit adalah CaF2. Karena jumlah F- dua kali lebih banyak dari jumlah Ca2+, semua lubang tetrahedral dalam susunan ccp Ca2+ ditempati oleh F-, sebagaimana diperlihatkan dalam Gambar 2.10. Ada empat Ca2+ dan delapan F- dalam sel satuan, empat kali rumus empirisnya. Struktur anti-fluorit didapatkan dengan menukar posisi kation dan anion, dan struktur ini diadopsi misalnya oleh kalium oksida K2O.
Gambar 2.10 Struktur flourit.



f. Aturan jari-jari
Biasanya, energi potensial Coulomb total Ec senyawa ionik univalen MX diungkapkan dengan persamaan
= −
NA adalah konstanta Avogadro, A konstanta Madelung dan R jarak antar ion. Menurut rumus ini, struktur dengan rasion A/R akan lebih stabil. Konstanta Madelung senyawa MX meningkat dengan meningkatnya bilangan koordinasi. Di pihak lain, akan menguntungkan menurunkan bilangan koordinasi untuk menurunkan nilai R dalam hal ukuran M kecil, agar kontak antara M dan X dapat terjadi lebih baik. Dalam kristal ionik, rasio rM dan rX dengan anion saling kontak satu sama lain dan juga berkontak dengan kation bergantung pada bilangan koordinasi. Dalam bagian struktur yang terdiri hanya anion, anion membentuk koordinasi polihedra di sekeliling kation. Jari-jari anion rX adalah separuh sisi polihedral dan jarak kation di pusat polihedral ke sudut polihedral adalah jumlah jari-jari kation dan anion rX + rM. Polihedra dalam CsCl adalah kubus, struktur NaCl adalah oktahedral, dan ZnS adalah tetrahedral. Jarak dari pusat ke sudut polihedral adalah berturut-turut √3rX, √2 rX dan ½√6rX. Sehingga, rasio jari-jari kation dan anion adalah are (√3rX-rX)/ rX = √3-1 = 732 untuk CsCl, (√2rX-rX)/ rX = √2-1 = 0.414 untuk NaCl, dan (½√6rX-rX)/ rX = ½√6-1 = 0.225 untuk ZnS ( Gambar 2.11). Telah dijelaskan bahwa bilangan koordinasi menurun bila rasio jari-jari lebih kecil dari nilai yang diberikan sebab kation dan anion tidak bersentuhan satu sama lain, yang menyebabkan ketidakstabilan. Di lain pihak, bilangan koordinasi meningkat untuk kation yang lebih besar, yang akan meningkatkan rasio jari-jari.
Namun demikian, hubungan antara bilangan koordinasi dan rasio jari-jari tidak sederhana. Misalnya, semua halida logam alkali mengadopsi struktur NaCl pada suhu normal kecuali cesium khlorida CsCl, cesium bromida CsBr dan cesium iodida CsI. Tidak dimungkinkan untuk menetapkan struktur ion dari rasio jari-jari bahkan untuk senyawa yang paling sederhana seperti alkali halida sekalipun. Namun, kecenderungan kualitatif bahwa ion yang lebih kecil cenderung berkoordinasi dengan lebih sedikit ion lawan biasanya benar.




Gambar 2.11 Rasio jari-jari kation dan anion.
g.  Variasi ungkapan struktur padatan
Banyak padatan anorganik memiliki struktur 3-dimensi yang rumit. Ilustrasi yang berbeda dari senyawa yang sama akan membantu kita memahami struktur tersebut. Dalam hal senyawa anorganik yang rumit, menggambarkan ikatan antar atom, seperti yang digunakan dalam senyawa organik biasanya menyebabkan kebingungan. Anion dalam kebanyakan oksida, sulfida atau halide logam membentuk tetrahedral atau oktahedral di sekeliling kation logam. Walaupun tidak terdapat ikatan antar anion, strukturnya akan disederhanakan bila struktur diilustrasikan dengan polihedra anion yang menggunakan bersama sudut, sisi atau muka. Dalam ilustrasi semacam ini, atom logam biasanya diabaikan. Seperti telah disebutkan struktur ionik dapat dianggap sebagai susunan terjejal anion. Gambar 2.12 dan 2-13 mengilustrasikan ketiga representasi ini untuk fosfor pentoksida molekular P2O5 (= P4O10) dan molibdenum pentakhlorida MoCl5 (= Mo2Cl10). Representasi polihedra jauh lebih mudah dipahami untuk struktur molekul besar atau padatan yang dibentuk oleh tak hingga banyaknya atom. Namun, representasi garis ikatan juga cocok untuk senyawa molekular.

Gambar 2.12 Tiga cara representasi P4O10.



Gambar 2.13 Tiga cara representasi Mo2Cl10.
3. Faktor elektronik yang menentukan ikatan dan struktur
Ikatan dan struktur senyawa ditentukan oleh sifat elektronik seperti kekuatan atom-atom penyusun dalam menarik dan menolak elektron, orbital molekul yang diisi eletron valensi, dsb. Susunan geometris atom juga dipengaruhi oleh interaksi elektronik antar elektron non ikatan. Di bawah ini beberapa konsep fundamental akan dipaparkan.
a.  Muatan inti efektif
Karena muatan positif inti biasanya sedikit banyak dilawan oleh muatan negatif elektron dalam (di bawah elektron valensi), muatan inti yang dirasakan oleh elektron valensi suatu atom dengan nomor atom Z akan lebih kecil dari muatan inti, Ze. Penurunan ini diungkapkan dengan konstanta perisai σ, dan muatan inti netto disebut dengan muatan inti efektif, Zeff.
Zeff = Z – σ
        Muatan inti efektif bervariasi mengikuti variasi orbital dan jarak dari inti.
b.  Energi ionisasi
Energi ionisasi didefinisikan sebagai energi minimum yang diperlukan untuk mengeluarkan elektron dari atom dalam fasa gas (g), sebagaimana ditunjukkan dalam persamaan berikut.
A(g) → A+ (g) + e (g)
Energi ionisasi diungkapkan dalam satuan elektron volt (eV), 1 eV = 96.49 kJmol-1. Energi ionisasi pertama, yang mengeluarkan elektron terluar, merupakan energi ionisasi terendah, dan energi ionisasi ke-2 dan ke-3, yang mengionisasi lebih lanjut kation, meningkat dengan cepat. Entalpi ionisasi, yakni perubahan entalpi standar proses ionisasi dan digunakan dalam perhitungan termodinamika, adalah energi ionisasi yang ditambah dengan RT (R adalah tetapan gas 8.31451 JK-1mol-1 dan T adalah temperatur, 2.479 kJ (0.026 eV), pada suhu kamar).                                                                                             Perbedaan kedua parameter ini kecil. Energi ionisasi pertama bervariasi secara periodik dengan nomor atom dalam tabel periodik, dengan unsur di kiri bawah tabel (cesium, Cs) memiliki energi ionisasi pertama yang terkecil dan unsur yang terkanan dan teratas (helium, He) adalah yang terbesar. Dapat dipahami bahwa unsur alkali umumnya memiliki energi ionisasi terendah sebab unsur-unsur ini akan terstabilkan dengan pengeluaran satu elektron terluar untuk mencapai konfigurasi gas mulia.
Unsur-unsur gas mulia memiliki struktur elektronik yang stabil, dan dengan demikian energy ionisasinya terbesar. Walaupun energi ionisasi meningkat hampir secara monoton dari logam alkali sampai gas mulia, ada penurunan di beberapa tempat, seperti antara nitrogen N dan oksigen O, serta antara fosfor p dan belerang S. Nilai energi ionisasi pertama diberikan di Tabel 2.5. Tabel 2.5 Parameter elektronik atom (eV). I: energi ionisasi pertama, A: afinitas elektron, χ: keelektronegativan (Mulliken).




c.  Afinitas elektron
Afinitas elektron adalah negatif entalpi penangkapan elektron oleh atom dalam fasa gas,         sebagaimana ditunjukkan dalam persamaan berikut dan dilambangkan dengan A ( = -ΔHeg ) (Tabel 2-5).
A(g) + e → A-(g)
Afinitas elektron dapat dianggap entalpi ionisasi anion. Karena atom halogen mencapai konfigurasi elektron gas mulia bila satu elektron ditambahkan, afinitas elektron halogen bernilai besar.
d.  Ke-elektronegativan
Ke-elektronegativan adalah salah satu parameter atom paling fundamental yang
mengungkapkan secara numerik kecenderungan atom untuk menarik elektron dalam molekul. Kelektronegativan sangat bermanfaat untuk menjelaskan perbedaan dalam ikatan, struktur dan reaksi dari sudut pandang sifat atom. Berbagai cara telah diajukan untuk menjelaskan dasar teori kekuatan tarikan elektron, dan berbagai studi masih aktif dilakukan untuk mencari nilai numeric dari ke-elektronegativan.                           Skala Pauling, dikenalkan pertama sekali tahun 1932, masih merupakan skala yang paling sering digunakan, dan nilai-nilai yang didapatkan dengan cara lain dijustifikasi bila nilainya dekat dengan skala Pauling. L. Pauling mendefinisikan ke-elektrogenativan sebagai besaran kuantitatif karakter ionik ikatan. Awalnya persamaan berikut diusulkan untuk mendefinisikan karakter ionik ikatan antara A dan B.
Δ = D(AB)-½(D(AA)+D(BB))
D adalah energi ikatan kovalen. Namun, kemudian diamati Δ tidak selalu positif, dan Pauling memodifikasi definisinya dengan:
Δ = D(AB) - (D(AA) × D(BB) )
      dan meredefinisikan karakter ionik ikatan A-B. Lebih lanjut, ke-elektronegativan χ didefinisikan dengan cara agar perbedaan ke-elektronegativam atom A dan B sebanding dengan akar kuadrat karakter ion. Di sini, koefisien 0.208 ditentukan agar kelektronegativan H 2.1 bila energi ikatan dinyatakan dalam satuan kkal mol-1. − = 0.208 Δ A B χ χ Karena ke-elektronegativan Pauling meningkat dengan kenaikan bilangan oksidasi atom, nilai-nilai ini berhubungan dengan bilangan oksidasi tertinggi masing-masing unsur. Kelektronegativan yang dihitung dengan nilai-nilai energi ikatan yang terbaru diberikan dalam Tabel 2.6.





Tabel 2.6 Ke-elektronegativan Pauling.
A. L. Allred dan E. G. Rochow mendefinisikan ke-elektronegativan sebagai medan listrik dipermukaan atom Zeff /r2 . Mereka menambahkan konstanta untuk membuat keelektronegativan mereka χAR sedekat mungkin dengan nilai Pauling dengan menggunakan r adalah jari-jari ikatan kovalen atom.
0.74 0.36 2
r
Zeff
AR
χ = +
32
Nampak hasilnya adalah unsur-unsur dengan jari-jari kovalen yang kecil dan muatan inti efektif yang besar memiliki ke-elektronegativan yang besar (Tabel 2-6).
R. Mulliken mendefinisikan ke-elektronegativan χM sebagai rata-rata energi ionisasi I dan afinitas elektron A sebagai berikut ( Gambar 2.14).
( )
2
1 I A M χ = +
Karena energi ionisasi adalah energi eksitasi elektronik dari HOMO dan afinitas elektron adalah energi penambahan elektron ke LUMO (lihat bagian 2.3 (e)), dalam definisi ini keelektronegativan dapat juga disebut rata-rata tingkat energi HOMO dan LUMO. Unsur-unsur yang sukar diionisasi dan mudah menarik elektron memiliki nilai ke-elektronegativan yang besar. Walaupun ke-elektronegativan didefinisikan dengan keadaan valensi dalam molekul dan memiliki dimensi energi, hasil yang diperoleh dianggap bilangan tak berdimensi (Tabel 2-5).




Gambar 2.14 Ke-elektronegativan Mulliken.
Walaupun definisi Mulliken jelas sebab berhubungan langsung dengan orbital atom, biasanya nilai ke-elektronegativan Pauling atau Allred-Rochow yang digunakan. Karena nilai-nilai ini tidak terlalu banyak berbeda, ke-elektronegativan Pauling biasanya cukup bila dipilih salah satu. Nilai ke-elektronegativan berubah tidak hanya dengan perubahan definisi, tetapi juga sangat dipengaruhi oleh keadaan ikatan atom, dan nilai-nilai itu harus digunakan dengan hati-hati. Keelektronegativan atom-atom penyusun adalah besaran yang sangat penting untuk menjelaskan ikatan, struktur dan reaksi senyawa. Oleh karena itu, kimiawan teori selalu berusaha untuk memperluas dasar parameter ini.
e. Orbital molekul
Fungsi gelombang elektron dalam suatu atom disebut orbital atom. Karena keboleh jadian menemukan elektron dalam orbital molekul sebanding dengan kuadrat fungsi gelombang, peta elektron nampak seperti fungsi gelombang. Suatu fungsi gelombang mempunyai daerah beramplitudo positif dan negatif yang disebut cuping (lobes).
Tumpang tindih cuping positif dengan positif atau negatif dengan negatif dalam molekul akan memperkuat satu sama lain membentuk ikatan, tetapi cuping positif dengan negatif akan meniadakan satu sama lain tidak membentuk ikatan. Besarnya efek interferensi ini mempengaruhi besarnya integral tumpang tindih dalam kimia kuantum.
Dalam pembentukan molekul, orbital atom bertumpang tindih menghasilkan orbital molekul yakni fungsi gelombang elektron dalam molekul. Jumlah orbital molekul adalah jumlah atom dan orbital molekul ini diklasifikasikan menjadi orbital molekul ikatan, non-ikatan, atau antiikatan sesuai dengan besarnya partisipasi orbital itu dalam ikatan antar atom. Kondisi pembentukan orbital molekul ikatan adalah sebagai berikut. [Syarat pembentukan orbital molekul ikatan]
(1) Cuping orbital atom penyusunnya cocok untuk tumpang tindih.
(2) Tanda positif atau negatif cuping yang bertumpang tindih sama.
(3) Tingkat energi orbital-orbital atomnya dekat.
Kasus paling sederhana adalah orbital molekul yang dibentuk dari orbital atom A dan B dan akan dijelaskan di sini. Orbital molekul ikatan dibentuk antara A dan B bila syarat-syarat di atas dipenuhi, tetapi bila tanda salah satu orbital atom dibalik, syarat ke-2 tidak dipenuhi dan orbital molekul anti ikatan yang memiliki cuping yang bertumpang tindih dengan tanda berlawanan yang akan dihasilkan ( Gambar 2.15). Tingkat energi orbital molekul ikatan lebih rendah, sementara tingkat energi orbital molekul anti ikatan lebih tinggi dari tingkat energi orbital atom penyusunnya. Semakin besar selisih energi orbital ikatan dan anti ikatan, semakin kuat ikatan. Bila tidak ada interaksi ikatan dan anti ikatan antara A dan B, orbital molekul yang dihasilkan adalah orbital nonn ikatan. Elektron menempati orbital molekul dari energi terendah ke energi yang tertinggi. Orbital molekul terisi dan berenergi tertinggi disebut HOMO (highest occupied molecular orbital) dan orbitalmolekul kosong berenergi terendah disebut LUMO (lowest unoccupied molecular orbital).                                                                                              Ken'ichi Fukui (pemenang Nobel 1981) menamakan orbital-orbital ini orbital-orbital terdepan (frontier). Dua atau lebih orbital molekul yang berenergi sama disebut orbital terdegenerasi (degenerate). Simbol orbital yang tidak terdegenerasi adalah a atau b, yang terdegenerasi ganda e, dan yang terdegenerasi rangkap tiga t. Simbol g (gerade) ditambahkan sebagai akhiran pada orbital yang sentrosimetrik dan u (ungerade) pada orbital yang berubah tanda dengan inversi di titik pusat inversi.                             Bilangan sebelum simbol simetri digunakan dalam urutan energi untuk membedakan orbital yang sama degenarasinya. Selain itu, orbital-orbital itu dinamakan sigma (σ) atau pi(π) sesuai dengan karakter orbitalnya. Suatu orbital sigma mempunyai simetri rotasi sekeliling sumbu ikatan, dan orbital pi memiliki bidang simpul. Oleh karena itu, ikatan sigma dibentuk oleh tumpang tindih orbital s-s, p-p, s-d, p-d, dan d-d ( Gambar 2.16) dan ikatan pi dibentuk oleh tumpang tindih orbital p-p, p-d, dan d-d ( Gambar 2.17).
       

Gambar 2.15 Pembentukan orbital molekul.
                                     


Gambar 2.16 Orbital molekul σ.




                                                 
Gambar 2.17 Orbital molekul π.
Bila dua fungsi gelombang dari dua atom dinyatakan dengan φA dan φB, orbital molekul adalah kombinasi linear orbital atom (linear combination of the atomic orbitals (LCAO)) diungkapkan sebagai
ψ = CAφA + CBφB
hanya orbital-orbital atom kulit elektron valensi yang digunakan dalam metoda orbital molekul sederhana.                                                                                                            
Pembentukan orbital molekul diilustrasikan di bawah ini untuk kasus sederhana
molekul dua atom. Semua tingkat di bawah HOMO terisi dan semua tingkat di atas LUMO kosong.
Dalam molekul hidrogen, H2, tumpang tindih orbital 1s masing-masing atom hydrogen membentuk orbital ikatan σg bila cupingnya mempunyai tanda yang sama dan antiikatan σu bila bertanda berlawanan, dan dua elektron mengisi orbital ikatan σg (Gambar 2.18).


Gambar 2.18 Orbital molekul H2.
Tanda panah mengindikasikan spin elektronnya. Dalam molekul dua atom periode dua, dari litium Li2 sampai flourin F2, bila sumbu z adalah sumbu ikatan, 1σg dan 1σu dibentuk oleh tumpang tindih orbital 2s dan 2σg dan 2σu dari orbital 2pz dan 1πu dan 1πg dari 2px, dan 2py. Tingkat energi orbital molekul dari Li2 sampai N2 tersusun dalam urutan 1σg < 1σu < 1πu < 2σg < 1πg < 2σu dan elektron menempati tingkat-tingkat ini berturut-turut dari dasar. Contoh untuk molekul N2 dengan 10 elektron valensi ditunjukkan di Gambar 2.19. Karena urutan orbital agak berbeda di O2 dan F2, yakni orbital 2σg lebih rendah dari 1πu, orbital molekul untuk O2, diilustrasikan di Gambar 2.20. Elektron ke-11 dan 12 akan mengisi orbital 1πg yang terdegenerasi dalam keadaan dasar dan spinnya paralel sesuai aturan Hund dan oleh karena itu oksigen memiliki dua elektron tidak berpasangan.
Gambar 2.19 Orbital molekul N2.






Gambar 2.20 Orbital molekul O2.

Orbital molekul dua atom yang berbeda dibentuk dengan tumpang tindih orbital  atom    yang tingkat energinya berbeda. Tingkat energi atom yang lebih elektronegatif umumnya lebih rendah, dan orbital molekul lebih dekat sifatnya pada orbital atom yang tingkat energinya lebih dekat. Oleh karena itu, orbital ikatan mempunyai karakter atom dengan ke-elektronegativan lebih besar, dan orbital anti ikatan mempunyai karakter atom dengan ke-elektronegativan lebih kecil.
Misalnya, lima orbital molekul dalam hidrogen fluorida, HF, dibentuk dari orbital 1s hidrogen dan orbital 2s dan 2p fluor, sebagaimana diperlihatkan dalam Gambar 2.21. Orbital ikatan 1σ mempunyai karakter fluorin, dan orbital 3σ anti ikatan memiliki karakter 1s hidrogen. Karena hidrogen hanya memiliki satu orbital 1s, tumpang tindih dengan orbital 2p fluor dengan karakter π tidak efektif, dan orbital 2p fluor menjadi orbital nonikatan. Karena HF memiliki delapan elektron valensi, orbital nonikatan ini menjadi HOMO.

Gambar 2.21 Orbital molekul HF.
Dalam karbon monoksida, CO, karbon dan oksigen memiliki orbital 2s dan 2p yang menghasilkan baik ikatan sigma dan pi, dan ikatan rangkap tiga dibentuk antar atomnya. Walaupun 8 orbital molekulnya dalam kasus ini secara kualitatif sama dengan yang dimiliki molekul yang isoelektronik yakni N2 dan 10 elektron menempati orbital sampai 3σ, tingkat energi setiap orbital berbeda dari tingkat energi molekul nitrogen. Orbital ikatan 1σ memiliki karakter 2s oksigen sebab oksigen memiliki ke-elektronegativan lebih besar. Orbital antiikatan 2π dan 4σ memiliki karakter 2p karbon ( Gambar 2.22).


Gambar 2.22 Orbital molekul CO.
Orde ikatan antar atom adalah separuh dari jumlah elektron yang ada di orbital ikatan dikurangi dengan jumlah yang ada di orbital anti ikatan. Misalnya, dalam N2 atau CO, orde ikatannya adalah 1/2(8 - 2) = 3 dan nilai ini konsisten dengan struktur Lewisnya.

Tidak ada komentar:

Posting Komentar